On the Square-free Numbers in Shifted Primes

Zerui Tan The High School Attached to The Hunan Normal University, China Advisor : Yongxing Cheng

May 19, 2014

On the Square-free Numbers in Shifted Primes

May 19, 2014

Abstract

In this paper, we prove that for any A > 2, $Q_k(x)$, the number of primes not exceeding x such that p - k is square free, have the following asymptotic formula

$$\mathcal{Q}_k(x) = \prod_{p|k} \left(1 + \frac{1}{p^2 - p - 1} \right) \prod_p \left(1 - \frac{1}{p(p-1)} \right) \operatorname{li} x + O\left(\frac{x}{(\log x)^A} \right)$$

with x sufficiently large. Where the implied constant depends only on A.

Contents

1	Intr	oduction	2				
2	2 Proof of Theorem 1.1						
	2.1	Upper bound for $S_{\alpha,1/2}$, S_1 and R_{α}	3				
	2.2	Completion	6				

 $^{^{0}}Keywords:$ shifted primes, square free numbers

1 Introduction

In this article, We obtain the following results.

Theorem 1.1. For any A > 2, we have

$$Q_k(x) = C_k \operatorname{li} x + O_A\left(\frac{x}{(\log x)^A}\right)$$

where the constant

$$C_{k} = \prod_{p|k} \left(1 + \frac{1}{p^{2} - p - 1} \right) \prod_{p} \left(1 - \frac{1}{p(p-1)} \right)$$

To prove the theorem, we need the following simple ideas. The simplest one is ____

$$\sum_{d|n} \mu(d) = \delta(n)$$

where

$$\delta(n) := \begin{cases} 1 & n = 1\\ 0 & \text{otherwise} \end{cases}$$

Therefore we have

$$\mu^2(n) = \sum_{d^2|n} \mu(d)$$

where the sum $\sum_{d^2|n}$ is over all positive divisor d such that $d^2|n$. We also need a well-known theorem due to Bombieri and A.I.Vinogradov

Theorem 1.2. (Bombieri-Vinogradov) Let A > 0, There is some constant B = B(A) such that

$$\sum_{q \le x^{1/2}/(\log x)^B} \max_{y \le x} \max_{(a,q)=1} \left| \pi(y;q,a) - \frac{\mathrm{li}(y)}{\varphi(q)} \right| \ll_A \frac{x}{(\log x)^A} \quad (x \ge 2)$$

For the proof of the theorem, see [2].

2 Proof of Theorem 1.1

It is easy to see that

$$\mathcal{Q}_k(x) = \sum_{p \le x} \mu^2(p-k)$$

Because any number $n \in \mathbb{N}$ can be written as the form $n = a^2 b$ uniquely, where b is a square free number. n is square free if and only if b = 1, by the fact $\delta = \mu * 1$ thus

$$\mu^2(n) = \sum_{d^2|n} \mu(d)$$

We obtain

$$\mathcal{Q}_k(x) = \sum_{p \le x} \sum_{d^2 \mid p-k} \mu(d) = \sum_{d < \sqrt{x}} \sum_{\substack{p \le x \\ p \equiv k \pmod{d^2}}} \mu(d) = \sum_{d < \sqrt{x}} \mu(d) \pi(x; d^2, k)$$

Let $\mathcal{L} = \log x$, we divide this sum in to two pieces, $[1, x^{\alpha} \mathcal{L}^{-B_0}), [x^{\alpha} \mathcal{L}^{-B_0}, x^{1/2}]$

$$\mathcal{Q}_k(x) = \sum_{d < x^{\alpha} \mathcal{L}^{-B_0}} \mu(d) \pi(x; d^2, k) + \sum_{x^{\alpha} \mathcal{L}^{-B_0} \le d < x^{1/2}} \mu(d) \pi(x; d^2, k)$$

= $S_{\alpha} + S_{\alpha, 1/2}$

For the first part, we can write $\pi(x; d^2, k)$ as

$$\pi(x; d^2, k) = \frac{\rho_k(d)}{\varphi(d^2)} \mathrm{li}x + \left(\pi(x; d^2, k) - \frac{\rho_k(d)}{\varphi(d^2)} \mathrm{li}x\right)$$

Where

$$\rho_k(n) := \sum_{d \mid (n,k)} \mu(d)$$

is the characteristic function of the number n that relative prime with k. Thus we get

$$S_{\alpha} = \lim x \sum_{d < x^{\alpha} \mathcal{L}^{-B_{0}}} \frac{\rho_{k}(d)\mu(d)}{d\varphi(d)} + \sum_{d < x^{\alpha} \mathcal{L}^{-B_{0}}} \mu(d) \left(\pi(x; d^{2}, k) - \frac{\rho_{k}(d) \lim x}{\varphi(d^{2})}\right)$$
$$= C_{k} \lim x + O\left(\lim x \sum_{d \ge x^{\alpha} \mathcal{L}^{-B_{0}}} \frac{\rho_{k}(d)\mu(d)}{\varphi(d^{2})}\right)$$
$$+ \sum_{d < x^{\alpha} \mathcal{L}^{-B_{0}}} \mu(d) \left(\pi(x; d^{2}, k) - \frac{\rho_{k}(d)}{\varphi(d^{2})} \lim x\right)$$
$$= C_{k} \lim x + O(S_{1}) + R_{\alpha}$$

Where

$$C_k = \sum_{d=1}^{\infty} \frac{\rho_k(d)\mu(d)}{\varphi(d^2)} = \prod_{p|k} \left(1 + \frac{1}{p^2 - p - 1}\right) \prod_p \left(1 - \frac{1}{p(p-1)}\right)$$

2.1 Upper bound for $S_{\alpha,1/2}$, S_1 and R_{α}

Now, we are going to find the upper bound for

$$S_{\alpha,1/2} = \sum_{x^{\alpha} \mathcal{L}^{-B_0} \le d < x^{1/2}} \mu(d) \pi(x; d^2, k)$$

We only need to consider the trivial bound

$$\pi(x; d^2, k) \ll \frac{x}{d^2}$$

So we obtain

$$|S_{\alpha,1/2}| = \left| \sum_{\substack{x^{\alpha}\mathcal{L}^{-B_0} \le d < x^{1/2}}} \mu(d)\pi(x; d^2, k) \right|$$

$$\ll x \sum_{\substack{x^{\alpha}\mathcal{L}^{-B_0} \le d < x^{1/2}}} d^{-2}$$

$$\ll x \int_{\substack{x^{\alpha}\mathcal{L}^{-B_0}}}^{x^{1/2}} \frac{dt}{t^2}$$

$$\ll x^{1-\alpha} (\log x)^{B_0} - x^{1/2}$$

Of course we let $1/2 > \alpha > 0$, namely $|S_{\alpha,1/2}| \ll x^{1-\alpha} (\log x)^{B_0}$. Now, we are going to find the upper bound for

$$S_1 = \lim \sum_{n \ge x^{\alpha} \mathcal{L}^{-B_0}} \frac{\rho_k(n)\mu(n)}{\varphi(n^2)}$$

In fact, this is very easy , since $\varphi(d^2)$ is approximately equals to d^2 for square free number d. Thus S_1 will goes to zero in some sense like $O(x^{1-\alpha+\epsilon})$ as $x \to \infty$.

Lemma 2.1. If d is a square free number, then we have

$$\varphi(d) \gg \frac{d}{\left(\log \log_2 d \log \log \log_2 d\right)^{c_2}}$$

where $c_2 > 0$ is some constant.

Proof.

$$\begin{split} \varphi(d) &= \varphi\left(\prod_{p|d} p\right) = d \prod_{p|d} \left(1 - \frac{1}{p}\right) \ge d \prod_{p \le p_{\omega(d)}} \left(1 - \frac{1}{p}\right) \\ &= d \exp\left(\sum_{p \le p_{\omega(d)}} \log\left(1 - 1/p\right)\right) \\ &\ge d \exp\left(\sum_{p \le p_{\omega(d)}} -\frac{2\log 2}{p}\right) \\ &= d \exp\left(-2\log 2\left(\log\log p_{\omega(d)} + c_1 + O(1/\log p_{\omega(d)})\right)\right) \\ &\gg de^{-c_2(\log\log\log_2 d + \log\log\log\log_2 d)} \\ &= \frac{d}{(\log\log_2 d\log\log\log_2 d)^{c_2}} \end{split}$$

_ 1
1

Lemma 2.2.

$$\lim x \sum_{n \ge x^{\alpha} \mathcal{L}^{-B_0}} \frac{\rho_k(n)\mu(n)}{\varphi(n^2)} \ll \frac{x^{1-\alpha} \left(\log \log_2 x \log \log \log_2 x\right)^{c_2}}{(\log x)^{1-B_0}} \ll x^{1-\alpha} \mathcal{L}^{B_0}$$

Proof. Because $\mu(n)=0$ if n is not square free, we can assume n is square free. We have

 $\varphi(n^2) = n\varphi(n)$

And

$$\sum_{n \ge x} \frac{1}{n^2} \le \int_{x-1}^\infty \frac{\mathrm{d}t}{t^2} \ll \frac{1}{x}$$

Thus

$$\left|\sum_{n \ge x^{\alpha} \mathcal{L}^{-B_0}} \frac{\rho_k(n)\mu(n)}{\varphi(n^2)}\right| \le \sum_{n \ge x^{\alpha} \mathcal{L}^{-B_0}} \frac{1}{n\varphi(n)} \ll \frac{\left(\log \log_2 x \log \log \log_2 x\right)^{c_2}}{x^{\alpha} (\log x)^{-B_0}}$$

And notice that $\lim x \ll x/\log x$, which completes the proof.

Now we are going to consider the R_{α} .

$$R_{\alpha} = \sum_{d < x^{\alpha} \mathcal{L}^{-B_0}} \mu(d) \left(\pi(x; d^2, k) - \frac{\rho_k(d)}{\varphi(d^2)} \mathrm{li}x \right)$$

where the constant $B_0 = B(A)/2$ is the constant in the Bombieri-Vinogradov Theorem. Now we let $\alpha = 1/4$, by the Bombieri-Vinogradov Theorem we simply obtain

$$|R_{1}/4| = \left| \sum_{\substack{d < x^{1/4}/(\log x)^{B_{0}}}} \mu(d) \left(\pi(x; d^{2}, k) - \frac{\rho_{k}(d)}{\varphi(d^{2})} \operatorname{li} x \right) \right|$$

$$\ll \left| \sum_{\substack{d^{2} < x^{1/2} \mathcal{L}^{-2B_{0}}\\\rho_{k}(d)=1}} \pi(x; d^{2}, k) - \frac{\operatorname{li} x}{\varphi(d^{2})} \right| + \left| \sum_{\substack{d^{2} < x^{1/2} \mathcal{L}^{-2B_{0}}\\\rho_{k}(d)=0}} \pi(x; d^{2}, k) \right|$$

$$\ll \frac{x}{(\log x)^{A}}$$

2.2 Completion

Combining the results we got, for any $A \ge 2, k \in \mathbb{N}^+$ and x sufficiently large, we have

$$\begin{aligned} \mathcal{Q}_k(x) &= C_k \mathrm{li} x + O(S_1) + S_{1/4,1/2} + R_1/4 \\ &= C_k \mathrm{li} x + O\left(x^{3/4} (\log x)^{B_0} + x^{3/4} (\log x)^{B_0} + \frac{x}{(\log x)^A}\right) \\ &= \mathrm{li} x \prod_{p|k} \left(1 + \frac{1}{p^2 - p - 1}\right) \prod_p \left(1 - \frac{1}{p(p - 1)}\right) + O\left(\frac{x}{(\log x)^A}\right) \end{aligned}$$

Therefore

$$\mathcal{Q}_{k}(x) = \lim_{p \mid k} \prod_{p \mid k} \left(1 + \frac{1}{p^{2} - p - 1} \right) \prod_{p} \left(1 - \frac{1}{p(p - 1)} \right) + O\left(\frac{x}{(\log x)^{A}} \right)$$

This is the result we desire. As a consequence, we have

$$\lim_{x \to \infty} \frac{\mathcal{Q}_k(x)}{\mathrm{li}x} = C_k > 0$$

That is, the primes that p-k square-free has the positive density in the primes.

Appendix Table of $Q_k(x)$ For k = 1, 2, 3

We made a program using C++ on our computer to calculate some numerical value of $Q_k(x)$ (for k = 1, 2, 3 and $x \leq 10^7$).

x	$Q_1(x)$	$C_1 lix$	$C_1^{-1}Q_1(x)/\mathrm{li}x$	$Q_2(x)$	$Q_3(x)$
10	3	1.9148	1.5667	3	1
50	8	6.5156	1.2278	11	6
100	13	10.875	1.1954	20	10
500	40	37.676	1.0617	74	41
1000	68	66.027	1.0299	127	74
5000	255	255.50	0.99804	506	295
1×10^4	467	465.61	1.0030	925	548
$5 imes 10^4$	1943	1931.7	1.0058	3841	2280
1×10^5	3599	3600.7	0.99953	7175	4292
5×10^5	15602	15559	1.0028	31020	18603
1×10^{6}	29397	29403	0.99980	58653	35153
5×10^6	130391	130375	1.0001	260381	156249
1×10^7	248518	248650	0.99947	496848	298075

References

- [1] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory
- [2] Dimitris Koukoulopoulos, Sieve Methods
- [3] Melvyn B. Nathanson, Elementary Methods in Number Theory
- [4] Kenneth Ireland and Michael Rosen, A Classical Introduction to Modern Number Theory (Second Edition)
- [5] Karatsuba, Basic Analytic Number Theory