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Abstract

In this paper, we prove that for any A > 2, Qk(x), the number of
primes not exceeding x such that p− k is square free, have the following
asymptotic formula

Qk(x) =
∏
p|k

(
1 +

1

p2 − p− 1

)∏
p

(
1− 1

p(p− 1)

)
lix + O

(
x

(log x)A

)
with x sufficiently large. Where the implied constant depends only on A.
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1 Introduction

In this article, We obtain the following results.

Theorem 1.1. For any A > 2, we have

Qk(x) = Cklix+OA

(
x

(log x)A

)
where the constant

Ck =
∏
p|k

(
1 +

1

p2 − p− 1

)∏
p

(
1− 1

p(p− 1)

)

To prove the theorem, we need the following simple ideas. The simplest one
is ∑

d|n

µ(d) = δ(n)

where

δ(n) :=

{
1 n = 1
0 otherwise

Therefore we have
µ2(n) =

∑
d2|n

µ(d)

where the sum
∑
d2|n is over all positive divisor d such that d2|n.

We also need a well-known theorem due to Bombieri and A.I.Vinogradov

Theorem 1.2. (Bombieri-Vinogradov)
Let A > 0, There is some constant B = B(A) such that∑

q≤x1/2/(log x)B

max
y≤x

max
(a,q)=1

∣∣∣∣π(y; q, a)− li(y)

ϕ(q)

∣∣∣∣�A
x

(log x)A
(x ≥ 2)

For the proof of the theorem, see [2].

2 Proof of Theorem 1.1

It is easy to see that

Qk(x) =
∑
p≤x

µ2(p− k)

Because any number n ∈ N can be written as the form n = a2b uniquely, where
b is a square free number. n is square free if and only if b = 1, by the fact
δ = µ ∗ 1 thus

µ2(n) =
∑
d2|n

µ(d)
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We obtain

Qk(x) =
∑
p≤x

∑
d2|p−k

µ(d) =
∑
d<
√
x

∑
p≤x

p≡k(mod d2)

µ(d) =
∑
d<
√
x

µ(d)π(x; d2, k)

Let L = log x, we divide this sum in to two pieces, [1, xαL−B0), [xαL−B0 , x1/2]

Qk(x) =
∑

d<xαL−B0

µ(d)π(x; d2, k) +
∑

xαL−B0≤d<x1/2

µ(d)π(x; d2, k)

= Sα + Sα,1/2

For the first part, we can write π(x; d2, k) as

π(x; d2, k) =
ρk(d)

ϕ(d2)
lix+

(
π(x; d2, k)− ρk(d)

ϕ(d2)
lix

)
Where

ρk(n) :=
∑
d|(n,k)

µ(d)

is the characteristic function of the number n that relative prime with k. Thus
we get

Sα = lix
∑

d<xαL−B0

ρk(d)µ(d)

dϕ(d)
+

∑
d<xαL−B0

µ(d)

(
π(x; d2, k)− ρk(d)lix

ϕ(d2)

)

= Cklix+O

lix
∑

d≥xαL−B0

ρk(d)µ(d)

ϕ(d2)


+

∑
d<xαL−B0

µ(d)

(
π(x; d2, k)− ρk(d)

ϕ(d2)
lix

)
= Cklix+O(S1) +Rα

Where

Ck =

∞∑
d=1

ρk(d)µ(d)

ϕ(d2)
=
∏
p|k

(
1 +

1

p2 − p− 1

)∏
p

(
1− 1

p(p− 1)

)

2.1 Upper bound for Sα,1/2, S1 and Rα

Now, we are going to find the upper bound for

Sα,1/2 =
∑

xαL−B0≤d<x1/2

µ(d)π(x; d2, k)

We only need to consider the trivial bound

π(x; d2, k)� x

d2

3



So we obtain

|Sα,1/2| =

∣∣∣∣∣∣
∑

xαL−B0≤d<x1/2

µ(d)π(x; d2, k)

∣∣∣∣∣∣
� x

∑
xαL−B0≤d<x1/2

d−2

� x

∫ x1/2

xαL−B0

dt

t2

� x1−α(log x)B0 − x1/2

Of course we let 1/2 > α > 0, namely |Sα,1/2| � x1−α(log x)B0 . Now, we are
going to find the upper bound for

S1 = lix
∑

n≥xαL−B0

ρk(n)µ(n)

ϕ(n2)

In fact, this is very easy ,since ϕ(d2) is approximately equals to d2 for square free
number d. Thus S1 will goes to zero in some sense like O(x1−α+ε) as x→∞.

Lemma 2.1. If d is a square free number, then we have

ϕ(d)� d

(log log2 d log log log2 d)
c2

where c2 > 0 is some constant.

Proof.

ϕ(d) = ϕ

∏
p|d

p

 = d
∏
p|d

(
1− 1

p

)
≥ d

∏
p≤pω(d)

(
1− 1

p

)

= d exp

 ∑
p≤pω(d)

log (1− 1/p)


≥ d exp

 ∑
p≤pω(d)

−2 log 2

p


= d exp

(
−2 log 2

(
log log pω(d) + c1 +O(1/ log pω(d))

))
� de−c2(log log log2 d+log log log log2 d)

=
d

(log log2 d log log log2 d)
c2
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Lemma 2.2.

lix
∑

n≥xαL−B0

ρk(n)µ(n)

ϕ(n2)
� x1−α (log log2 x log log log2 x)

c2

(log x)1−B0
� x1−αLB0

Proof. Because µ(n) = 0 if n is not square free, we can assume n is square free.
We have

ϕ(n2) = nϕ(n)

And ∑
n≥x

1

n2
≤
∫ ∞
x−1

dt

t2
� 1

x

Thus∣∣∣∣∣∣
∑

n≥xαL−B0

ρk(n)µ(n)

ϕ(n2)

∣∣∣∣∣∣ ≤
∑

n≥xαL−B0

1

nϕ(n)
� (log log2 x log log log2 x)

c2

xα(log x)−B0

And notice that lix� x/ log x, which completes the proof.

Now we are going to consider the Rα.

Rα =
∑

d<xαL−B0

µ(d)

(
π(x; d2, k)− ρk(d)

ϕ(d2)
lix

)

where the constant B0 = B(A)/2 is the constant in the Bombieri-Vinogradov
Theorem. Now we let α = 1/4, by the Bombieri-Vinogradov Theorem we simply
obtain

|R1/4| =

∣∣∣∣∣∣
∑

d<x1/4/(log x)B0

µ(d)

(
π(x; d2, k)− ρk(d)

ϕ(d2)
lix

)∣∣∣∣∣∣
�

∣∣∣∣∣∣∣∣
∑

d2<x1/2L−2B0
ρk(d)=1

π(x; d2, k)− lix

ϕ(d2)

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
∑

d2<x1/2L−2B0
ρk(d)=0

π(x; d2, k)

∣∣∣∣∣∣∣∣
� x

(log x)A
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2.2 Completion

Combining the results we got, for any A ≥ 2, k ∈ N+ and x sufficiently large,
we have

Qk(x) = Cklix+O(S1) + S1/4,1/2 +R1/4

= Cklix+O

(
x3/4(log x)B0 + x3/4(log x)B0 +

x

(log x)A

)
= lix

∏
p|k

(
1 +

1

p2 − p− 1

)∏
p

(
1− 1

p(p− 1)

)
+O

(
x

(log x)A

)

Therefore

Qk(x) = lix
∏
p|k

(
1 +

1

p2 − p− 1

)∏
p

(
1− 1

p(p− 1)

)
+O

(
x

(log x)A

)

This is the result we desire. As a consequence, we have

lim
x→∞

Qk(x)

lix
= Ck > 0

That is, the primes that p−k square-free has the positive density in the primes.
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Appendix Table of Qk(x) For k = 1, 2, 3

We made a program using C++ on our computer to calculate some numerical
value of Qk(x) (for k = 1, 2, 3 and x ≤ 107).

x Q1(x) C1lix C1
−1Q1(x)/lix Q2(x) Q3(x)

10 3 1.9148 1.5667 3 1
50 8 6.5156 1.2278 11 6
100 13 10.875 1.1954 20 10
500 40 37.676 1.0617 74 41
1000 68 66.027 1.0299 127 74
5000 255 255.50 0.99804 506 295

1× 104 467 465.61 1.0030 925 548
5× 104 1943 1931.7 1.0058 3841 2280
1× 105 3599 3600.7 0.99953 7175 4292
5× 105 15602 15559 1.0028 31020 18603
1× 106 29397 29403 0.99980 58653 35153
5× 106 130391 130375 1.0001 260381 156249
1× 107 248518 248650 0.99947 496848 298075
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